Properties

Label 1216.383
Modulus $1216$
Conductor $76$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,13]))
 
pari: [g,chi] = znchar(Mod(383,1216))
 

Basic properties

Modulus: \(1216\)
Conductor: \(76\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{76}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1216.bm

\(\chi_{1216}(127,\cdot)\) \(\chi_{1216}(319,\cdot)\) \(\chi_{1216}(383,\cdot)\) \(\chi_{1216}(447,\cdot)\) \(\chi_{1216}(831,\cdot)\) \(\chi_{1216}(895,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: \(\Q(\zeta_{76})^+\)

Values on generators

\((191,837,705)\) → \((-1,1,e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 1216 }(383, a) \) \(1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{17}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1216 }(383,a) \;\) at \(\;a = \) e.g. 2