Properties

Label 1232.1205
Modulus $1232$
Conductor $176$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,0,18]))
 
pari: [g,chi] = znchar(Mod(1205,1232))
 

Basic properties

Modulus: \(1232\)
Conductor: \(176\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{176}(149,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1232.cp

\(\chi_{1232}(29,\cdot)\) \(\chi_{1232}(85,\cdot)\) \(\chi_{1232}(365,\cdot)\) \(\chi_{1232}(589,\cdot)\) \(\chi_{1232}(645,\cdot)\) \(\chi_{1232}(701,\cdot)\) \(\chi_{1232}(981,\cdot)\) \(\chi_{1232}(1205,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.200317132330035063121671003054276608.1

Values on generators

\((463,309,353,673)\) → \((1,i,1,e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 1232 }(1205, a) \) \(-1\)\(1\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(-1\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{17}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1232 }(1205,a) \;\) at \(\;a = \) e.g. 2