Basic properties
Modulus: | \(1254\) | |
Conductor: | \(627\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{627}(215,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1254.br
\(\chi_{1254}(17,\cdot)\) \(\chi_{1254}(35,\cdot)\) \(\chi_{1254}(101,\cdot)\) \(\chi_{1254}(149,\cdot)\) \(\chi_{1254}(161,\cdot)\) \(\chi_{1254}(215,\cdot)\) \(\chi_{1254}(233,\cdot)\) \(\chi_{1254}(347,\cdot)\) \(\chi_{1254}(359,\cdot)\) \(\chi_{1254}(365,\cdot)\) \(\chi_{1254}(479,\cdot)\) \(\chi_{1254}(491,\cdot)\) \(\chi_{1254}(503,\cdot)\) \(\chi_{1254}(557,\cdot)\) \(\chi_{1254}(689,\cdot)\) \(\chi_{1254}(701,\cdot)\) \(\chi_{1254}(821,\cdot)\) \(\chi_{1254}(833,\cdot)\) \(\chi_{1254}(899,\cdot)\) \(\chi_{1254}(959,\cdot)\) \(\chi_{1254}(1031,\cdot)\) \(\chi_{1254}(1073,\cdot)\) \(\chi_{1254}(1157,\cdot)\) \(\chi_{1254}(1163,\cdot)\)
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Values on generators
\((419,343,1123)\) → \((-1,e\left(\frac{9}{10}\right),e\left(\frac{7}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | \(37\) |
\( \chi_{ 1254 }(215, a) \) | \(1\) | \(1\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{4}{5}\right)\) |