Properties

Label 1254.347
Modulus $1254$
Conductor $627$
Order $90$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,81,80]))
 
pari: [g,chi] = znchar(Mod(347,1254))
 

Basic properties

Modulus: \(1254\)
Conductor: \(627\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{627}(347,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1254.br

\(\chi_{1254}(17,\cdot)\) \(\chi_{1254}(35,\cdot)\) \(\chi_{1254}(101,\cdot)\) \(\chi_{1254}(149,\cdot)\) \(\chi_{1254}(161,\cdot)\) \(\chi_{1254}(215,\cdot)\) \(\chi_{1254}(233,\cdot)\) \(\chi_{1254}(347,\cdot)\) \(\chi_{1254}(359,\cdot)\) \(\chi_{1254}(365,\cdot)\) \(\chi_{1254}(479,\cdot)\) \(\chi_{1254}(491,\cdot)\) \(\chi_{1254}(503,\cdot)\) \(\chi_{1254}(557,\cdot)\) \(\chi_{1254}(689,\cdot)\) \(\chi_{1254}(701,\cdot)\) \(\chi_{1254}(821,\cdot)\) \(\chi_{1254}(833,\cdot)\) \(\chi_{1254}(899,\cdot)\) \(\chi_{1254}(959,\cdot)\) \(\chi_{1254}(1031,\cdot)\) \(\chi_{1254}(1073,\cdot)\) \(\chi_{1254}(1157,\cdot)\) \(\chi_{1254}(1163,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((419,343,1123)\) → \((-1,e\left(\frac{9}{10}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 1254 }(347, a) \) \(1\)\(1\)\(e\left(\frac{29}{90}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{31}{90}\right)\)\(e\left(\frac{22}{45}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{29}{45}\right)\)\(e\left(\frac{41}{45}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{43}{45}\right)\)\(e\left(\frac{4}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1254 }(347,a) \;\) at \(\;a = \) e.g. 2