Properties

Label 1305.1198
Modulus $1305$
Conductor $145$
Order $28$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,10]))
 
pari: [g,chi] = znchar(Mod(1198,1305))
 

Basic properties

Modulus: \(1305\)
Conductor: \(145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{145}(38,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1305.cd

\(\chi_{1305}(208,\cdot)\) \(\chi_{1305}(352,\cdot)\) \(\chi_{1305}(613,\cdot)\) \(\chi_{1305}(622,\cdot)\) \(\chi_{1305}(847,\cdot)\) \(\chi_{1305}(883,\cdot)\) \(\chi_{1305}(892,\cdot)\) \(\chi_{1305}(937,\cdot)\) \(\chi_{1305}(1108,\cdot)\) \(\chi_{1305}(1153,\cdot)\) \(\chi_{1305}(1198,\cdot)\) \(\chi_{1305}(1252,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.0.50201655190081835380839261671426578388690948486328125.1

Values on generators

\((146,262,901)\) → \((1,-i,e\left(\frac{5}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1305 }(1198, a) \) \(-1\)\(1\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(i\)\(e\left(\frac{5}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1305 }(1198,a) \;\) at \(\;a = \) e.g. 2