Properties

Label 1305.cd
Modulus $1305$
Conductor $145$
Order $28$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,22]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(208,1305))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1305\)
Conductor: \(145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 145.q
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.0.50201655190081835380839261671426578388690948486328125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{1305}(208,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(i\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{1305}(352,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(-i\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{1305}(613,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(i\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{1305}(622,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(-i\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{1305}(847,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(-i\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{1305}(883,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(i\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{1305}(892,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(-i\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{1305}(937,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(-i\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{1305}(1108,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(i\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{1305}(1153,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(i\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{1305}(1198,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(i\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{1305}(1252,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(-i\) \(e\left(\frac{4}{7}\right)\)