Properties

Label 132300.11381
Modulus 132300132300
Conductor 3307533075
Order 630630
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,595,252,495]))
 
pari: [g,chi] = znchar(Mod(11381,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 3307533075
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 630630
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ33075(11381,)\chi_{33075}(11381,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bbh

χ132300(41,)\chi_{132300}(41,\cdot) χ132300(461,)\chi_{132300}(461,\cdot) χ132300(1721,)\chi_{132300}(1721,\cdot) χ132300(2561,)\chi_{132300}(2561,\cdot) χ132300(2981,)\chi_{132300}(2981,\cdot) χ132300(4241,)\chi_{132300}(4241,\cdot) χ132300(5081,)\chi_{132300}(5081,\cdot) χ132300(6341,)\chi_{132300}(6341,\cdot) χ132300(8021,)\chi_{132300}(8021,\cdot) χ132300(8861,)\chi_{132300}(8861,\cdot) χ132300(9281,)\chi_{132300}(9281,\cdot) χ132300(10121,)\chi_{132300}(10121,\cdot) χ132300(10541,)\chi_{132300}(10541,\cdot) χ132300(11381,)\chi_{132300}(11381,\cdot) χ132300(13061,)\chi_{132300}(13061,\cdot) χ132300(14321,)\chi_{132300}(14321,\cdot) χ132300(15161,)\chi_{132300}(15161,\cdot) χ132300(16421,)\chi_{132300}(16421,\cdot) χ132300(16841,)\chi_{132300}(16841,\cdot) χ132300(17681,)\chi_{132300}(17681,\cdot) χ132300(18941,)\chi_{132300}(18941,\cdot) χ132300(19361,)\chi_{132300}(19361,\cdot) χ132300(20621,)\chi_{132300}(20621,\cdot) χ132300(21881,)\chi_{132300}(21881,\cdot) χ132300(22721,)\chi_{132300}(22721,\cdot) χ132300(23141,)\chi_{132300}(23141,\cdot) χ132300(23981,)\chi_{132300}(23981,\cdot) χ132300(25241,)\chi_{132300}(25241,\cdot) χ132300(25661,)\chi_{132300}(25661,\cdot) χ132300(26921,)\chi_{132300}(26921,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ315)\Q(\zeta_{315})
Fixed field: Number field defined by a degree 630 polynomial (not computed)

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(1718),e(25),e(1114))(1,e\left(\frac{17}{18}\right),e\left(\frac{2}{5}\right),e\left(\frac{11}{14}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(11381,a) \chi_{ 132300 }(11381, a) 1111e(67630)e\left(\frac{67}{630}\right)e(53630)e\left(\frac{53}{630}\right)e(1105)e\left(\frac{1}{105}\right)e(130)e\left(\frac{1}{30}\right)e(407630)e\left(\frac{407}{630}\right)e(559630)e\left(\frac{559}{630}\right)e(5390)e\left(\frac{53}{90}\right)e(43105)e\left(\frac{43}{105}\right)e(139315)e\left(\frac{139}{315}\right)e(3163)e\left(\frac{31}{63}\right)
sage: chi.jacobi_sum(n)
 
χ132300(11381,a)   \chi_{ 132300 }(11381,a) \; at   a=\;a = e.g. 2