from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
M = H._module
chi = DirichletCharacter(H, M([0,455,252,45]))
pari: [g,chi] = znchar(Mod(21881,132300))
χ132300(41,⋅)
χ132300(461,⋅)
χ132300(1721,⋅)
χ132300(2561,⋅)
χ132300(2981,⋅)
χ132300(4241,⋅)
χ132300(5081,⋅)
χ132300(6341,⋅)
χ132300(8021,⋅)
χ132300(8861,⋅)
χ132300(9281,⋅)
χ132300(10121,⋅)
χ132300(10541,⋅)
χ132300(11381,⋅)
χ132300(13061,⋅)
χ132300(14321,⋅)
χ132300(15161,⋅)
χ132300(16421,⋅)
χ132300(16841,⋅)
χ132300(17681,⋅)
χ132300(18941,⋅)
χ132300(19361,⋅)
χ132300(20621,⋅)
χ132300(21881,⋅)
χ132300(22721,⋅)
χ132300(23141,⋅)
χ132300(23981,⋅)
χ132300(25241,⋅)
χ132300(25661,⋅)
χ132300(26921,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(66151,122501,15877,54001) → (1,e(1813),e(52),e(141))
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ132300(21881,a) |
1 | 1 | e(630407) | e(630463) | e(10586) | e(3011) | e(63037) | e(630509) | e(9013) | e(10523) | e(315299) | e(6320) |