Properties

Label 132300.15733
Modulus 132300132300
Conductor 1102511025
Order 420420
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(420))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,280,63,100]))
 
pari: [g,chi] = znchar(Mod(15733,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 1102511025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 420420
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11025(1033,)\chi_{11025}(1033,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.zz

χ132300(37,)\chi_{132300}(37,\cdot) χ132300(613,)\chi_{132300}(613,\cdot) χ132300(3637,)\chi_{132300}(3637,\cdot) χ132300(3817,)\chi_{132300}(3817,\cdot) χ132300(4573,)\chi_{132300}(4573,\cdot) χ132300(7597,)\chi_{132300}(7597,\cdot) χ132300(8173,)\chi_{132300}(8173,\cdot) χ132300(8353,)\chi_{132300}(8353,\cdot) χ132300(11197,)\chi_{132300}(11197,\cdot) χ132300(11377,)\chi_{132300}(11377,\cdot) χ132300(11953,)\chi_{132300}(11953,\cdot) χ132300(14977,)\chi_{132300}(14977,\cdot) χ132300(15733,)\chi_{132300}(15733,\cdot) χ132300(15913,)\chi_{132300}(15913,\cdot) χ132300(18937,)\chi_{132300}(18937,\cdot) χ132300(19513,)\chi_{132300}(19513,\cdot) χ132300(22537,)\chi_{132300}(22537,\cdot) χ132300(23473,)\chi_{132300}(23473,\cdot) χ132300(26317,)\chi_{132300}(26317,\cdot) χ132300(26497,)\chi_{132300}(26497,\cdot) χ132300(27073,)\chi_{132300}(27073,\cdot) χ132300(27253,)\chi_{132300}(27253,\cdot) χ132300(30097,)\chi_{132300}(30097,\cdot) χ132300(30277,)\chi_{132300}(30277,\cdot) χ132300(30853,)\chi_{132300}(30853,\cdot) χ132300(31033,)\chi_{132300}(31033,\cdot) χ132300(34633,)\chi_{132300}(34633,\cdot) χ132300(34813,)\chi_{132300}(34813,\cdot) χ132300(37837,)\chi_{132300}(37837,\cdot) χ132300(38413,)\chi_{132300}(38413,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ420)\Q(\zeta_{420})
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(23),e(320),e(521))(1,e\left(\frac{2}{3}\right),e\left(\frac{3}{20}\right),e\left(\frac{5}{21}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(15733,a) \chi_{ 132300 }(15733, a) 1-111e(62105)e\left(\frac{62}{105}\right)e(17420)e\left(\frac{17}{420}\right)e(379420)e\left(\frac{379}{420}\right)e(130)e\left(\frac{1}{30}\right)e(13420)e\left(\frac{13}{420}\right)e(53210)e\left(\frac{53}{210}\right)e(15)e\left(\frac{1}{5}\right)e(407420)e\left(\frac{407}{420}\right)e(53105)e\left(\frac{53}{105}\right)e(2984)e\left(\frac{29}{84}\right)
sage: chi.jacobi_sum(n)
 
χ132300(15733,a)   \chi_{ 132300 }(15733,a) \; at   a=\;a = e.g. 2