from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([0,280,63,100]))
pari: [g,chi] = znchar(Mod(15733,132300))
χ132300(37,⋅)
χ132300(613,⋅)
χ132300(3637,⋅)
χ132300(3817,⋅)
χ132300(4573,⋅)
χ132300(7597,⋅)
χ132300(8173,⋅)
χ132300(8353,⋅)
χ132300(11197,⋅)
χ132300(11377,⋅)
χ132300(11953,⋅)
χ132300(14977,⋅)
χ132300(15733,⋅)
χ132300(15913,⋅)
χ132300(18937,⋅)
χ132300(19513,⋅)
χ132300(22537,⋅)
χ132300(23473,⋅)
χ132300(26317,⋅)
χ132300(26497,⋅)
χ132300(27073,⋅)
χ132300(27253,⋅)
χ132300(30097,⋅)
χ132300(30277,⋅)
χ132300(30853,⋅)
χ132300(31033,⋅)
χ132300(34633,⋅)
χ132300(34813,⋅)
χ132300(37837,⋅)
χ132300(38413,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(66151,122501,15877,54001) → (1,e(32),e(203),e(215))
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ132300(15733,a) |
−1 | 1 | e(10562) | e(42017) | e(420379) | e(301) | e(42013) | e(21053) | e(51) | e(420407) | e(10553) | e(8429) |