Properties

Label 132300.38413
Modulus $132300$
Conductor $11025$
Order $420$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(420))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,280,399,220]))
 
pari: [g,chi] = znchar(Mod(38413,132300))
 

Basic properties

Modulus: \(132300\)
Conductor: \(11025\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(420\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(1663,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.zz

\(\chi_{132300}(37,\cdot)\) \(\chi_{132300}(613,\cdot)\) \(\chi_{132300}(3637,\cdot)\) \(\chi_{132300}(3817,\cdot)\) \(\chi_{132300}(4573,\cdot)\) \(\chi_{132300}(7597,\cdot)\) \(\chi_{132300}(8173,\cdot)\) \(\chi_{132300}(8353,\cdot)\) \(\chi_{132300}(11197,\cdot)\) \(\chi_{132300}(11377,\cdot)\) \(\chi_{132300}(11953,\cdot)\) \(\chi_{132300}(14977,\cdot)\) \(\chi_{132300}(15733,\cdot)\) \(\chi_{132300}(15913,\cdot)\) \(\chi_{132300}(18937,\cdot)\) \(\chi_{132300}(19513,\cdot)\) \(\chi_{132300}(22537,\cdot)\) \(\chi_{132300}(23473,\cdot)\) \(\chi_{132300}(26317,\cdot)\) \(\chi_{132300}(26497,\cdot)\) \(\chi_{132300}(27073,\cdot)\) \(\chi_{132300}(27253,\cdot)\) \(\chi_{132300}(30097,\cdot)\) \(\chi_{132300}(30277,\cdot)\) \(\chi_{132300}(30853,\cdot)\) \(\chi_{132300}(31033,\cdot)\) \(\chi_{132300}(34633,\cdot)\) \(\chi_{132300}(34813,\cdot)\) \(\chi_{132300}(37837,\cdot)\) \(\chi_{132300}(38413,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((66151,122501,15877,54001)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{19}{20}\right),e\left(\frac{11}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 132300 }(38413, a) \) \(-1\)\(1\)\(e\left(\frac{86}{105}\right)\)\(e\left(\frac{281}{420}\right)\)\(e\left(\frac{187}{420}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{289}{420}\right)\)\(e\left(\frac{209}{210}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{131}{420}\right)\)\(e\left(\frac{104}{105}\right)\)\(e\left(\frac{5}{84}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 132300 }(38413,a) \;\) at \(\;a = \) e.g. 2