Properties

Label 1332.187
Modulus $1332$
Conductor $1332$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,24,1]))
 
pari: [g,chi] = znchar(Mod(187,1332))
 

Basic properties

Modulus: \(1332\)
Conductor: \(1332\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1332.dr

\(\chi_{1332}(187,\cdot)\) \(\chi_{1332}(283,\cdot)\) \(\chi_{1332}(331,\cdot)\) \(\chi_{1332}(463,\cdot)\) \(\chi_{1332}(499,\cdot)\) \(\chi_{1332}(679,\cdot)\) \(\chi_{1332}(799,\cdot)\) \(\chi_{1332}(871,\cdot)\) \(\chi_{1332}(967,\cdot)\) \(\chi_{1332}(979,\cdot)\) \(\chi_{1332}(1051,\cdot)\) \(\chi_{1332}(1327,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.42263008854516662438364849366996329933779192991109099024104855333205078569792559831318528.2

Values on generators

\((667,1037,1297)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1332 }(187, a) \) \(1\)\(1\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{1}{18}\right)\)\(1\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{17}{36}\right)\)\(i\)\(e\left(\frac{17}{18}\right)\)\(i\)\(e\left(\frac{1}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1332 }(187,a) \;\) at \(\;a = \) e.g. 2