sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,12,23]))
pari:[g,chi] = znchar(Mod(967,1332))
Modulus: | 1332 | |
Conductor: | 1332 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1332(187,⋅)
χ1332(283,⋅)
χ1332(331,⋅)
χ1332(463,⋅)
χ1332(499,⋅)
χ1332(679,⋅)
χ1332(799,⋅)
χ1332(871,⋅)
χ1332(967,⋅)
χ1332(979,⋅)
χ1332(1051,⋅)
χ1332(1327,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(667,1037,1297) → (−1,e(31),e(3623))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ1332(967,a) |
1 | 1 | e(3613) | e(185) | 1 | e(3625) | e(3617) | e(3631) | −i | e(1813) | −i | e(1211) |
sage:chi.jacobi_sum(n)