from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1344, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,9,24,8]))
pari: [g,chi] = znchar(Mod(1277,1344))
Basic properties
Modulus: | \(1344\) | |
Conductor: | \(1344\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1344.cw
\(\chi_{1344}(5,\cdot)\) \(\chi_{1344}(101,\cdot)\) \(\chi_{1344}(173,\cdot)\) \(\chi_{1344}(269,\cdot)\) \(\chi_{1344}(341,\cdot)\) \(\chi_{1344}(437,\cdot)\) \(\chi_{1344}(509,\cdot)\) \(\chi_{1344}(605,\cdot)\) \(\chi_{1344}(677,\cdot)\) \(\chi_{1344}(773,\cdot)\) \(\chi_{1344}(845,\cdot)\) \(\chi_{1344}(941,\cdot)\) \(\chi_{1344}(1013,\cdot)\) \(\chi_{1344}(1109,\cdot)\) \(\chi_{1344}(1181,\cdot)\) \(\chi_{1344}(1277,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((127,1093,449,577)\) → \((1,e\left(\frac{3}{16}\right),-1,e\left(\frac{1}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 1344 }(1277, a) \) | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{48}\right)\) |
sage: chi.jacobi_sum(n)