from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1344, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,3,24,40]))
chi.galois_orbit()
[g,chi] = znchar(Mod(5,1344))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1344\) | |
Conductor: | \(1344\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1344}(5,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{48}\right)\) |
\(\chi_{1344}(101,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{48}\right)\) |
\(\chi_{1344}(173,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{29}{48}\right)\) |
\(\chi_{1344}(269,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{1344}(341,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{1344}(437,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{48}\right)\) |
\(\chi_{1344}(509,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{48}\right)\) |
\(\chi_{1344}(605,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{25}{48}\right)\) |
\(\chi_{1344}(677,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{1344}(773,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{43}{48}\right)\) |
\(\chi_{1344}(845,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{48}\right)\) |
\(\chi_{1344}(941,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{48}\right)\) |
\(\chi_{1344}(1013,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{48}\right)\) |
\(\chi_{1344}(1109,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{1344}(1181,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{41}{48}\right)\) |
\(\chi_{1344}(1277,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{48}\right)\) |