Properties

Label 143.129
Modulus 143143
Conductor 143143
Order 1010
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(143, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,5]))
 
pari: [g,chi] = znchar(Mod(129,143))
 

Basic properties

Modulus: 143143
Conductor: 143143
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 143.l

χ143(51,)\chi_{143}(51,\cdot) χ143(90,)\chi_{143}(90,\cdot) χ143(116,)\chi_{143}(116,\cdot) χ143(129,)\chi_{143}(129,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.0.875489472034463.1

Values on generators

(79,67)(79,67)(e(310),1)(e\left(\frac{3}{10}\right),-1)

First values

aa 1-111223344556677889910101212
χ143(129,a) \chi_{ 143 }(129, a) 1-111e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)e(35)e\left(\frac{3}{5}\right)e(710)e\left(\frac{7}{10}\right)e(15)e\left(\frac{1}{5}\right)e(35)e\left(\frac{3}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)1-111
sage: chi.jacobi_sum(n)
 
χ143(129,a)   \chi_{ 143 }(129,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ143(129,))   \tau_{ a }( \chi_{ 143 }(129,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ143(129,),χ143(n,))   J(\chi_{ 143 }(129,·),\chi_{ 143 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ143(129,))  K(a,b,\chi_{ 143 }(129,·)) \; at   a,b=\; a,b = e.g. 1,2