Properties

Label 143.l
Modulus 143143
Conductor 143143
Order 1010
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(143, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,5]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(51,143))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 143143
Conductor: 143143
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.0.875489472034463.1

Characters in Galois orbit

Character 1-1 11 22 33 44 55 66 77 88 99 1010 1212
χ143(51,)\chi_{143}(51,\cdot) 1-1 11 e(15)e\left(\frac{1}{5}\right) e(35)e\left(\frac{3}{5}\right) e(25)e\left(\frac{2}{5}\right) e(310)e\left(\frac{3}{10}\right) e(45)e\left(\frac{4}{5}\right) e(25)e\left(\frac{2}{5}\right) e(35)e\left(\frac{3}{5}\right) e(15)e\left(\frac{1}{5}\right) 1-1 11
χ143(90,)\chi_{143}(90,\cdot) 1-1 11 e(35)e\left(\frac{3}{5}\right) e(45)e\left(\frac{4}{5}\right) e(15)e\left(\frac{1}{5}\right) e(910)e\left(\frac{9}{10}\right) e(25)e\left(\frac{2}{5}\right) e(15)e\left(\frac{1}{5}\right) e(45)e\left(\frac{4}{5}\right) e(35)e\left(\frac{3}{5}\right) 1-1 11
χ143(116,)\chi_{143}(116,\cdot) 1-1 11 e(25)e\left(\frac{2}{5}\right) e(15)e\left(\frac{1}{5}\right) e(45)e\left(\frac{4}{5}\right) e(110)e\left(\frac{1}{10}\right) e(35)e\left(\frac{3}{5}\right) e(45)e\left(\frac{4}{5}\right) e(15)e\left(\frac{1}{5}\right) e(25)e\left(\frac{2}{5}\right) 1-1 11
χ143(129,)\chi_{143}(129,\cdot) 1-1 11 e(45)e\left(\frac{4}{5}\right) e(25)e\left(\frac{2}{5}\right) e(35)e\left(\frac{3}{5}\right) e(710)e\left(\frac{7}{10}\right) e(15)e\left(\frac{1}{5}\right) e(35)e\left(\frac{3}{5}\right) e(25)e\left(\frac{2}{5}\right) e(45)e\left(\frac{4}{5}\right) 1-1 11