Properties

Label 1455.64
Modulus 14551455
Conductor 485485
Order 88
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4,1]))
 
pari: [g,chi] = znchar(Mod(64,1455))
 

Basic properties

Modulus: 14551455
Conductor: 485485
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ485(64,)\chi_{485}(64,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.bf

χ1455(64,)\chi_{1455}(64,\cdot) χ1455(244,)\chi_{1455}(244,\cdot) χ1455(1114,)\chi_{1455}(1114,\cdot) χ1455(1294,)\chi_{1455}(1294,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.50498927798820625.1

Values on generators

(971,292,781)(971,292,781)(1,1,e(18))(1,-1,e\left(\frac{1}{8}\right))

First values

aa 1-11122447788111113131414161617171919
χ1455(64,a) \chi_{ 1455 }(64, a) 1111i-i1-1e(38)e\left(\frac{3}{8}\right)iii-ie(58)e\left(\frac{5}{8}\right)e(18)e\left(\frac{1}{8}\right)11e(58)e\left(\frac{5}{8}\right)e(18)e\left(\frac{1}{8}\right)
sage: chi.jacobi_sum(n)
 
χ1455(64,a)   \chi_{ 1455 }(64,a) \; at   a=\;a = e.g. 2