Properties

Label 1455.826
Modulus 14551455
Conductor 9797
Order 88
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,3]))
 
pari: [g,chi] = znchar(Mod(826,1455))
 

Basic properties

Modulus: 14551455
Conductor: 9797
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ97(50,)\chi_{97}(50,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1455.bg

χ1455(241,)\chi_{1455}(241,\cdot) χ1455(421,)\chi_{1455}(421,\cdot) χ1455(646,)\chi_{1455}(646,\cdot) χ1455(826,)\chi_{1455}(826,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.80798284478113.1

Values on generators

(971,292,781)(971,292,781)(1,1,e(38))(1,1,e\left(\frac{3}{8}\right))

First values

aa 1-11122447788111113131414161617171919
χ1455(826,a) \chi_{ 1455 }(826, a) 1111i-i1-1e(58)e\left(\frac{5}{8}\right)iiiie(38)e\left(\frac{3}{8}\right)e(38)e\left(\frac{3}{8}\right)11e(38)e\left(\frac{3}{8}\right)e(38)e\left(\frac{3}{8}\right)
sage: chi.jacobi_sum(n)
 
χ1455(826,a)   \chi_{ 1455 }(826,a) \; at   a=\;a = e.g. 2