Properties

Label 1455.bg
Modulus 14551455
Conductor 9797
Order 88
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1455, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,7]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(241,1455))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 14551455
Conductor: 9797
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 97.f
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.80798284478113.1

Characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 1919
χ1455(241,)\chi_{1455}(241,\cdot) 11 11 i-i 1-1 e(18)e\left(\frac{1}{8}\right) ii ii e(78)e\left(\frac{7}{8}\right) e(78)e\left(\frac{7}{8}\right) 11 e(78)e\left(\frac{7}{8}\right) e(78)e\left(\frac{7}{8}\right)
χ1455(421,)\chi_{1455}(421,\cdot) 11 11 ii 1-1 e(38)e\left(\frac{3}{8}\right) i-i i-i e(58)e\left(\frac{5}{8}\right) e(58)e\left(\frac{5}{8}\right) 11 e(58)e\left(\frac{5}{8}\right) e(58)e\left(\frac{5}{8}\right)
χ1455(646,)\chi_{1455}(646,\cdot) 11 11 ii 1-1 e(78)e\left(\frac{7}{8}\right) i-i i-i e(18)e\left(\frac{1}{8}\right) e(18)e\left(\frac{1}{8}\right) 11 e(18)e\left(\frac{1}{8}\right) e(18)e\left(\frac{1}{8}\right)
χ1455(826,)\chi_{1455}(826,\cdot) 11 11 i-i 1-1 e(58)e\left(\frac{5}{8}\right) ii ii e(38)e\left(\frac{3}{8}\right) e(38)e\left(\frac{3}{8}\right) 11 e(38)e\left(\frac{3}{8}\right) e(38)e\left(\frac{3}{8}\right)