Properties

Label 1575.541
Modulus 15751575
Conductor 175175
Order 1515
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,6,10]))
 
pari: [g,chi] = znchar(Mod(541,1575))
 

Basic properties

Modulus: 15751575
Conductor: 175175
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1515
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ175(16,)\chi_{175}(16,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1575.cs

χ1575(46,)\chi_{1575}(46,\cdot) χ1575(361,)\chi_{1575}(361,\cdot) χ1575(541,)\chi_{1575}(541,\cdot) χ1575(856,)\chi_{1575}(856,\cdot) χ1575(991,)\chi_{1575}(991,\cdot) χ1575(1171,)\chi_{1575}(1171,\cdot) χ1575(1306,)\chi_{1575}(1306,\cdot) χ1575(1486,)\chi_{1575}(1486,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

(1226,127,451)(1226,127,451)(1,e(15),e(13))(1,e\left(\frac{1}{5}\right),e\left(\frac{1}{3}\right))

First values

aa 1-1112244881111131316161717191922222323
χ1575(541,a) \chi_{ 1575 }(541, a) 1111e(1315)e\left(\frac{13}{15}\right)e(1115)e\left(\frac{11}{15}\right)e(35)e\left(\frac{3}{5}\right)e(815)e\left(\frac{8}{15}\right)e(45)e\left(\frac{4}{5}\right)e(715)e\left(\frac{7}{15}\right)e(1415)e\left(\frac{14}{15}\right)e(415)e\left(\frac{4}{15}\right)e(25)e\left(\frac{2}{5}\right)e(1315)e\left(\frac{13}{15}\right)
sage: chi.jacobi_sum(n)
 
χ1575(541,a)   \chi_{ 1575 }(541,a) \; at   a=\;a = e.g. 2