Properties

Label 1575.cs
Modulus $1575$
Conductor $175$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(46,1575))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1575\)
Conductor: \(175\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 175.q
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(17\) \(19\) \(22\) \(23\)
\(\chi_{1575}(46,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{1575}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{1575}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{1575}(856,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{1575}(991,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{1575}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{1575}(1306,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{1575}(1486,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{15}\right)\)