from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1575, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([20,12,0]))
chi.galois_orbit()
[g,chi] = znchar(Mod(106,1575))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1575\) | |
Conductor: | \(225\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(15\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 225.q | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 15 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1575}(106,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{1575}(211,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{1575}(421,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{1575}(736,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) |
\(\chi_{1575}(841,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{1575}(1156,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) |
\(\chi_{1575}(1366,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{1575}(1471,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) |