Properties

Label 1575.421
Modulus 15751575
Conductor 225225
Order 1515
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,18,0]))
 
pari: [g,chi] = znchar(Mod(421,1575))
 

Basic properties

Modulus: 15751575
Conductor: 225225
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1515
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ225(196,)\chi_{225}(196,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1575.ct

χ1575(106,)\chi_{1575}(106,\cdot) χ1575(211,)\chi_{1575}(211,\cdot) χ1575(421,)\chi_{1575}(421,\cdot) χ1575(736,)\chi_{1575}(736,\cdot) χ1575(841,)\chi_{1575}(841,\cdot) χ1575(1156,)\chi_{1575}(1156,\cdot) χ1575(1366,)\chi_{1575}(1366,\cdot) χ1575(1471,)\chi_{1575}(1471,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

(1226,127,451)(1226,127,451)(e(23),e(35),1)(e\left(\frac{2}{3}\right),e\left(\frac{3}{5}\right),1)

First values

aa 1-1112244881111131316161717191922222323
χ1575(421,a) \chi_{ 1575 }(421, a) 1111e(415)e\left(\frac{4}{15}\right)e(815)e\left(\frac{8}{15}\right)e(45)e\left(\frac{4}{5}\right)e(415)e\left(\frac{4}{15}\right)e(1115)e\left(\frac{11}{15}\right)e(115)e\left(\frac{1}{15}\right)e(45)e\left(\frac{4}{5}\right)e(45)e\left(\frac{4}{5}\right)e(815)e\left(\frac{8}{15}\right)e(1415)e\left(\frac{14}{15}\right)
sage: chi.jacobi_sum(n)
 
χ1575(421,a)   \chi_{ 1575 }(421,a) \; at   a=\;a = e.g. 2