Properties

Label 1600.1343
Modulus $1600$
Conductor $20$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,0,3]))
 
pari: [g,chi] = znchar(Mod(1343,1600))
 

Basic properties

Modulus: \(1600\)
Conductor: \(20\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1600.n

\(\chi_{1600}(1343,\cdot)\) \(\chi_{1600}(1407,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{20})^+\)

Values on generators

\((1151,901,577)\) → \((-1,1,-i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1600 }(1343, a) \) \(1\)\(1\)\(-i\)\(i\)\(-1\)\(-1\)\(i\)\(-i\)\(1\)\(1\)\(-i\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1600 }(1343,a) \;\) at \(\;a = \) e.g. 2