Properties

Label 162240.116303
Modulus $162240$
Conductor $40560$
Order $52$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162240, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,13,26,39,7]))
 
pari: [g,chi] = znchar(Mod(116303,162240))
 

Basic properties

Modulus: \(162240\)
Conductor: \(40560\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{40560}(4763,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 162240.xa

\(\chi_{162240}(47,\cdot)\) \(\chi_{162240}(3983,\cdot)\) \(\chi_{162240}(12527,\cdot)\) \(\chi_{162240}(25007,\cdot)\) \(\chi_{162240}(28943,\cdot)\) \(\chi_{162240}(37487,\cdot)\) \(\chi_{162240}(41423,\cdot)\) \(\chi_{162240}(49967,\cdot)\) \(\chi_{162240}(53903,\cdot)\) \(\chi_{162240}(62447,\cdot)\) \(\chi_{162240}(66383,\cdot)\) \(\chi_{162240}(74927,\cdot)\) \(\chi_{162240}(78863,\cdot)\) \(\chi_{162240}(87407,\cdot)\) \(\chi_{162240}(91343,\cdot)\) \(\chi_{162240}(99887,\cdot)\) \(\chi_{162240}(103823,\cdot)\) \(\chi_{162240}(112367,\cdot)\) \(\chi_{162240}(116303,\cdot)\) \(\chi_{162240}(124847,\cdot)\) \(\chi_{162240}(128783,\cdot)\) \(\chi_{162240}(141263,\cdot)\) \(\chi_{162240}(149807,\cdot)\) \(\chi_{162240}(153743,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((45631,70981,108161,64897,93121)\) → \((-1,i,-1,-i,e\left(\frac{7}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 162240 }(116303, a) \) \(1\)\(1\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{3}{26}\right)\)\(e\left(\frac{47}{52}\right)\)\(-1\)\(i\)\(e\left(\frac{7}{52}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{23}{52}\right)\)\(e\left(\frac{11}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 162240 }(116303,a) \;\) at \(\;a = \) e.g. 2