from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162240, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,39,26,13,21]))
chi.galois_orbit()
[g,chi] = znchar(Mod(47,162240))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(162240\) | |
Conductor: | \(40560\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(52\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 40560.ne | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{52})$ |
Fixed field: | Number field defined by a degree 52 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{162240}(47,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) |
\(\chi_{162240}(3983,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) |
\(\chi_{162240}(12527,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) |
\(\chi_{162240}(25007,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) |
\(\chi_{162240}(28943,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) |
\(\chi_{162240}(37487,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) |
\(\chi_{162240}(41423,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) |
\(\chi_{162240}(49967,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) |
\(\chi_{162240}(53903,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{162240}(62447,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{162240}(66383,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{162240}(74927,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{162240}(78863,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{162240}(87407,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{162240}(91343,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{162240}(99887,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{162240}(103823,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) |
\(\chi_{162240}(112367,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) |
\(\chi_{162240}(116303,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) |
\(\chi_{162240}(124847,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) |
\(\chi_{162240}(128783,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) |
\(\chi_{162240}(141263,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) |
\(\chi_{162240}(149807,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) |
\(\chi_{162240}(153743,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) |