Properties

Label 162240.xa
Modulus $162240$
Conductor $40560$
Order $52$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162240, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,39,26,13,21]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(47,162240))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(162240\)
Conductor: \(40560\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 40560.ne
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{162240}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{37}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{162240}(3983,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{51}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{162240}(12527,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{49}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{162240}(25007,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{9}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{162240}(28943,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{27}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{162240}(37487,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{162240}(41423,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{15}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{162240}(49967,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{33}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{162240}(53903,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{3}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{162240}(62447,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{45}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{162240}(66383,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{43}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{162240}(74927,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{5}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{162240}(78863,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{31}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{162240}(87407,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{17}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{162240}(91343,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{19}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{162240}(99887,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{29}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{162240}(103823,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{7}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{162240}(112367,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{41}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{162240}(116303,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{47}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{162240}(124847,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{1}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{162240}(128783,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{35}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{162240}(141263,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{23}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{162240}(149807,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{25}{52}\right)\) \(-1\) \(-i\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{162240}(153743,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{11}{52}\right)\) \(-1\) \(i\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{7}{26}\right)\)