Properties

Label 1638.109
Modulus $1638$
Conductor $91$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,8,9]))
 
pari: [g,chi] = znchar(Mod(109,1638))
 

Basic properties

Modulus: \(1638\)
Conductor: \(91\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{91}(18,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1638.fz

\(\chi_{1638}(109,\cdot)\) \(\chi_{1638}(541,\cdot)\) \(\chi_{1638}(1045,\cdot)\) \(\chi_{1638}(1243,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.61132828589969773.1

Values on generators

\((911,703,379)\) → \((1,e\left(\frac{2}{3}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1638 }(109, a) \) \(-1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1638 }(109,a) \;\) at \(\;a = \) e.g. 2