Properties

Label 1638.fz
Modulus $1638$
Conductor $91$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,8,9]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(109,1638))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1638\)
Conductor: \(91\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 91.z
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.61132828589969773.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{1638}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\)
\(\chi_{1638}(541,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\)
\(\chi_{1638}(1045,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\)
\(\chi_{1638}(1243,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\)