Properties

Label 1700.159
Modulus 17001700
Conductor 17001700
Order 8080
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,56,75]))
 
pari: [g,chi] = znchar(Mod(159,1700))
 

Basic properties

Modulus: 17001700
Conductor: 17001700
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8080
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.cp

χ1700(39,)\chi_{1700}(39,\cdot) χ1700(79,)\chi_{1700}(79,\cdot) χ1700(139,)\chi_{1700}(139,\cdot) χ1700(159,)\chi_{1700}(159,\cdot) χ1700(279,)\chi_{1700}(279,\cdot) χ1700(379,)\chi_{1700}(379,\cdot) χ1700(419,)\chi_{1700}(419,\cdot) χ1700(439,)\chi_{1700}(439,\cdot) χ1700(479,)\chi_{1700}(479,\cdot) χ1700(539,)\chi_{1700}(539,\cdot) χ1700(619,)\chi_{1700}(619,\cdot) χ1700(639,)\chi_{1700}(639,\cdot) χ1700(719,)\chi_{1700}(719,\cdot) χ1700(759,)\chi_{1700}(759,\cdot) χ1700(779,)\chi_{1700}(779,\cdot) χ1700(819,)\chi_{1700}(819,\cdot) χ1700(839,)\chi_{1700}(839,\cdot) χ1700(879,)\chi_{1700}(879,\cdot) χ1700(959,)\chi_{1700}(959,\cdot) χ1700(979,)\chi_{1700}(979,\cdot) χ1700(1059,)\chi_{1700}(1059,\cdot) χ1700(1119,)\chi_{1700}(1119,\cdot) χ1700(1159,)\chi_{1700}(1159,\cdot) χ1700(1179,)\chi_{1700}(1179,\cdot) χ1700(1219,)\chi_{1700}(1219,\cdot) χ1700(1319,)\chi_{1700}(1319,\cdot) χ1700(1439,)\chi_{1700}(1439,\cdot) χ1700(1459,)\chi_{1700}(1459,\cdot) χ1700(1519,)\chi_{1700}(1519,\cdot) χ1700(1559,)\chi_{1700}(1559,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ80)\Q(\zeta_{80})
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

(851,477,1601)(851,477,1601)(1,e(710),e(1516))(-1,e\left(\frac{7}{10}\right),e\left(\frac{15}{16}\right))

First values

aa 1-1113377991111131319192121232327272929
χ1700(159,a) \chi_{ 1700 }(159, a) 1111e(2780)e\left(\frac{27}{80}\right)e(516)e\left(\frac{5}{16}\right)e(2740)e\left(\frac{27}{40}\right)e(2180)e\left(\frac{21}{80}\right)e(120)e\left(\frac{1}{20}\right)e(940)e\left(\frac{9}{40}\right)e(1320)e\left(\frac{13}{20}\right)e(2180)e\left(\frac{21}{80}\right)e(180)e\left(\frac{1}{80}\right)e(4780)e\left(\frac{47}{80}\right)
sage: chi.jacobi_sum(n)
 
χ1700(159,a)   \chi_{ 1700 }(159,a) \; at   a=\;a = e.g. 2