from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,56,75]))
pari: [g,chi] = znchar(Mod(159,1700))
χ1700(39,⋅)
χ1700(79,⋅)
χ1700(139,⋅)
χ1700(159,⋅)
χ1700(279,⋅)
χ1700(379,⋅)
χ1700(419,⋅)
χ1700(439,⋅)
χ1700(479,⋅)
χ1700(539,⋅)
χ1700(619,⋅)
χ1700(639,⋅)
χ1700(719,⋅)
χ1700(759,⋅)
χ1700(779,⋅)
χ1700(819,⋅)
χ1700(839,⋅)
χ1700(879,⋅)
χ1700(959,⋅)
χ1700(979,⋅)
χ1700(1059,⋅)
χ1700(1119,⋅)
χ1700(1159,⋅)
χ1700(1179,⋅)
χ1700(1219,⋅)
χ1700(1319,⋅)
χ1700(1439,⋅)
χ1700(1459,⋅)
χ1700(1519,⋅)
χ1700(1559,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(851,477,1601) → (−1,e(107),e(1615))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ1700(159,a) |
1 | 1 | e(8027) | e(165) | e(4027) | e(8021) | e(201) | e(409) | e(2013) | e(8021) | e(801) | e(8047) |