Properties

Label 1700.779
Modulus $1700$
Conductor $1700$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,8,45]))
 
pari: [g,chi] = znchar(Mod(779,1700))
 

Basic properties

Modulus: \(1700\)
Conductor: \(1700\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.cp

\(\chi_{1700}(39,\cdot)\) \(\chi_{1700}(79,\cdot)\) \(\chi_{1700}(139,\cdot)\) \(\chi_{1700}(159,\cdot)\) \(\chi_{1700}(279,\cdot)\) \(\chi_{1700}(379,\cdot)\) \(\chi_{1700}(419,\cdot)\) \(\chi_{1700}(439,\cdot)\) \(\chi_{1700}(479,\cdot)\) \(\chi_{1700}(539,\cdot)\) \(\chi_{1700}(619,\cdot)\) \(\chi_{1700}(639,\cdot)\) \(\chi_{1700}(719,\cdot)\) \(\chi_{1700}(759,\cdot)\) \(\chi_{1700}(779,\cdot)\) \(\chi_{1700}(819,\cdot)\) \(\chi_{1700}(839,\cdot)\) \(\chi_{1700}(879,\cdot)\) \(\chi_{1700}(959,\cdot)\) \(\chi_{1700}(979,\cdot)\) \(\chi_{1700}(1059,\cdot)\) \(\chi_{1700}(1119,\cdot)\) \(\chi_{1700}(1159,\cdot)\) \(\chi_{1700}(1179,\cdot)\) \(\chi_{1700}(1219,\cdot)\) \(\chi_{1700}(1319,\cdot)\) \(\chi_{1700}(1439,\cdot)\) \(\chi_{1700}(1459,\cdot)\) \(\chi_{1700}(1519,\cdot)\) \(\chi_{1700}(1559,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((851,477,1601)\) → \((-1,e\left(\frac{1}{10}\right),e\left(\frac{9}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1700 }(779, a) \) \(1\)\(1\)\(e\left(\frac{61}{80}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{21}{40}\right)\)\(e\left(\frac{3}{80}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{80}\right)\)\(e\left(\frac{23}{80}\right)\)\(e\left(\frac{41}{80}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1700 }(779,a) \;\) at \(\;a = \) e.g. 2