Properties

Label 1700.811
Modulus $1700$
Conductor $1700$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,64,65]))
 
pari: [g,chi] = znchar(Mod(811,1700))
 

Basic properties

Modulus: \(1700\)
Conductor: \(1700\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.cq

\(\chi_{1700}(11,\cdot)\) \(\chi_{1700}(31,\cdot)\) \(\chi_{1700}(71,\cdot)\) \(\chi_{1700}(91,\cdot)\) \(\chi_{1700}(131,\cdot)\) \(\chi_{1700}(211,\cdot)\) \(\chi_{1700}(231,\cdot)\) \(\chi_{1700}(311,\cdot)\) \(\chi_{1700}(371,\cdot)\) \(\chi_{1700}(411,\cdot)\) \(\chi_{1700}(431,\cdot)\) \(\chi_{1700}(471,\cdot)\) \(\chi_{1700}(571,\cdot)\) \(\chi_{1700}(691,\cdot)\) \(\chi_{1700}(711,\cdot)\) \(\chi_{1700}(771,\cdot)\) \(\chi_{1700}(811,\cdot)\) \(\chi_{1700}(891,\cdot)\) \(\chi_{1700}(911,\cdot)\) \(\chi_{1700}(991,\cdot)\) \(\chi_{1700}(1031,\cdot)\) \(\chi_{1700}(1091,\cdot)\) \(\chi_{1700}(1111,\cdot)\) \(\chi_{1700}(1231,\cdot)\) \(\chi_{1700}(1331,\cdot)\) \(\chi_{1700}(1371,\cdot)\) \(\chi_{1700}(1391,\cdot)\) \(\chi_{1700}(1431,\cdot)\) \(\chi_{1700}(1491,\cdot)\) \(\chi_{1700}(1571,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((851,477,1601)\) → \((-1,e\left(\frac{4}{5}\right),e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1700 }(811, a) \) \(1\)\(1\)\(e\left(\frac{73}{80}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{79}{80}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{40}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{39}{80}\right)\)\(e\left(\frac{59}{80}\right)\)\(e\left(\frac{13}{80}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1700 }(811,a) \;\) at \(\;a = \) e.g. 2