Properties

Label 1710.1229
Modulus 17101710
Conductor 855855
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,9,5]))
 
pari: [g,chi] = znchar(Mod(1229,1710))
 

Basic properties

Modulus: 17101710
Conductor: 855855
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ855(374,)\chi_{855}(374,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1710.co

χ1710(299,)\chi_{1710}(299,\cdot) χ1710(509,)\chi_{1710}(509,\cdot) χ1710(599,)\chi_{1710}(599,\cdot) χ1710(839,)\chi_{1710}(839,\cdot) χ1710(1199,)\chi_{1710}(1199,\cdot) χ1710(1229,)\chi_{1710}(1229,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.81623484842733584357749488935542564453125.2

Values on generators

(191,1027,1351)(191,1027,1351)(e(56),1,e(518))(e\left(\frac{5}{6}\right),-1,e\left(\frac{5}{18}\right))

First values

aa 1-11177111113131717232329293131373741414343
χ1710(1229,a) \chi_{ 1710 }(1229, a) 11111-1e(16)e\left(\frac{1}{6}\right)e(59)e\left(\frac{5}{9}\right)e(79)e\left(\frac{7}{9}\right)e(29)e\left(\frac{2}{9}\right)e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)11e(79)e\left(\frac{7}{9}\right)e(518)e\left(\frac{5}{18}\right)
sage: chi.jacobi_sum(n)
 
χ1710(1229,a)   \chi_{ 1710 }(1229,a) \; at   a=\;a = e.g. 2