Properties

Label 1764.1433
Modulus $1764$
Conductor $441$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,11]))
 
pari: [g,chi] = znchar(Mod(1433,1764))
 

Basic properties

Modulus: \(1764\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{441}(110,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1764.cb

\(\chi_{1764}(173,\cdot)\) \(\chi_{1764}(185,\cdot)\) \(\chi_{1764}(425,\cdot)\) \(\chi_{1764}(437,\cdot)\) \(\chi_{1764}(677,\cdot)\) \(\chi_{1764}(689,\cdot)\) \(\chi_{1764}(929,\cdot)\) \(\chi_{1764}(941,\cdot)\) \(\chi_{1764}(1181,\cdot)\) \(\chi_{1764}(1193,\cdot)\) \(\chi_{1764}(1433,\cdot)\) \(\chi_{1764}(1445,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((883,785,1081)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{11}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 1764 }(1433, a) \) \(1\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{8}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1764 }(1433,a) \;\) at \(\;a = \) e.g. 2