from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1764, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,7,11]))
pari: [g,chi] = znchar(Mod(1433,1764))
Basic properties
Modulus: | \(1764\) | |
Conductor: | \(441\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{441}(110,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1764.cb
\(\chi_{1764}(173,\cdot)\) \(\chi_{1764}(185,\cdot)\) \(\chi_{1764}(425,\cdot)\) \(\chi_{1764}(437,\cdot)\) \(\chi_{1764}(677,\cdot)\) \(\chi_{1764}(689,\cdot)\) \(\chi_{1764}(929,\cdot)\) \(\chi_{1764}(941,\cdot)\) \(\chi_{1764}(1181,\cdot)\) \(\chi_{1764}(1193,\cdot)\) \(\chi_{1764}(1433,\cdot)\) \(\chi_{1764}(1445,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((883,785,1081)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{11}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 1764 }(1433, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{21}\right)\) |
sage: chi.jacobi_sum(n)