Properties

Label 1815.1706
Modulus $1815$
Conductor $363$
Order $22$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,0,18]))
 
pari: [g,chi] = znchar(Mod(1706,1815))
 

Basic properties

Modulus: \(1815\)
Conductor: \(363\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{363}(254,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.bc

\(\chi_{1815}(56,\cdot)\) \(\chi_{1815}(221,\cdot)\) \(\chi_{1815}(386,\cdot)\) \(\chi_{1815}(551,\cdot)\) \(\chi_{1815}(716,\cdot)\) \(\chi_{1815}(881,\cdot)\) \(\chi_{1815}(1046,\cdot)\) \(\chi_{1815}(1376,\cdot)\) \(\chi_{1815}(1541,\cdot)\) \(\chi_{1815}(1706,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((1211,727,1696)\) → \((-1,1,e\left(\frac{9}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 1815 }(1706, a) \) \(-1\)\(1\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{17}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1815 }(1706,a) \;\) at \(\;a = \) e.g. 2