Properties

Label 1815.56
Modulus 18151815
Conductor 363363
Order 2222
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,0,2]))
 
pari: [g,chi] = znchar(Mod(56,1815))
 

Basic properties

Modulus: 18151815
Conductor: 363363
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2222
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ363(56,)\chi_{363}(56,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.bc

χ1815(56,)\chi_{1815}(56,\cdot) χ1815(221,)\chi_{1815}(221,\cdot) χ1815(386,)\chi_{1815}(386,\cdot) χ1815(551,)\chi_{1815}(551,\cdot) χ1815(716,)\chi_{1815}(716,\cdot) χ1815(881,)\chi_{1815}(881,\cdot) χ1815(1046,)\chi_{1815}(1046,\cdot) χ1815(1376,)\chi_{1815}(1376,\cdot) χ1815(1541,)\chi_{1815}(1541,\cdot) χ1815(1706,)\chi_{1815}(1706,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

(1211,727,1696)(1211,727,1696)(1,1,e(111))(-1,1,e\left(\frac{1}{11}\right))

First values

aa 1-11122447788131314141616171719192323
χ1815(56,a) \chi_{ 1815 }(56, a) 1-111e(1322)e\left(\frac{13}{22}\right)e(211)e\left(\frac{2}{11}\right)e(711)e\left(\frac{7}{11}\right)e(1722)e\left(\frac{17}{22}\right)e(211)e\left(\frac{2}{11}\right)e(522)e\left(\frac{5}{22}\right)e(411)e\left(\frac{4}{11}\right)e(2122)e\left(\frac{21}{22}\right)e(611)e\left(\frac{6}{11}\right)e(1922)e\left(\frac{19}{22}\right)
sage: chi.jacobi_sum(n)
 
χ1815(56,a)   \chi_{ 1815 }(56,a) \; at   a=\;a = e.g. 2