Properties

Label 1815.47
Modulus 18151815
Conductor 18151815
Order 220220
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(220))
 
M = H._module
 
chi = DirichletCharacter(H, M([110,55,196]))
 
pari: [g,chi] = znchar(Mod(47,1815))
 

Basic properties

Modulus: 18151815
Conductor: 18151815
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 220220
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.bu

χ1815(38,)\chi_{1815}(38,\cdot) χ1815(47,)\chi_{1815}(47,\cdot) χ1815(53,)\chi_{1815}(53,\cdot) χ1815(92,)\chi_{1815}(92,\cdot) χ1815(113,)\chi_{1815}(113,\cdot) χ1815(137,)\chi_{1815}(137,\cdot) χ1815(152,)\chi_{1815}(152,\cdot) χ1815(158,)\chi_{1815}(158,\cdot) χ1815(203,)\chi_{1815}(203,\cdot) χ1815(212,)\chi_{1815}(212,\cdot) χ1815(218,)\chi_{1815}(218,\cdot) χ1815(257,)\chi_{1815}(257,\cdot) χ1815(278,)\chi_{1815}(278,\cdot) χ1815(302,)\chi_{1815}(302,\cdot) χ1815(317,)\chi_{1815}(317,\cdot) χ1815(368,)\chi_{1815}(368,\cdot) χ1815(377,)\chi_{1815}(377,\cdot) χ1815(383,)\chi_{1815}(383,\cdot) χ1815(422,)\chi_{1815}(422,\cdot) χ1815(443,)\chi_{1815}(443,\cdot) χ1815(467,)\chi_{1815}(467,\cdot) χ1815(482,)\chi_{1815}(482,\cdot) χ1815(488,)\chi_{1815}(488,\cdot) χ1815(533,)\chi_{1815}(533,\cdot) χ1815(542,)\chi_{1815}(542,\cdot) χ1815(548,)\chi_{1815}(548,\cdot) χ1815(587,)\chi_{1815}(587,\cdot) χ1815(647,)\chi_{1815}(647,\cdot) χ1815(653,)\chi_{1815}(653,\cdot) χ1815(698,)\chi_{1815}(698,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ220)\Q(\zeta_{220})
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

(1211,727,1696)(1211,727,1696)(1,i,e(4955))(-1,i,e\left(\frac{49}{55}\right))

First values

aa 1-11122447788131314141616171719192323
χ1815(47,a) \chi_{ 1815 }(47, a) 1111e(141220)e\left(\frac{141}{220}\right)e(31110)e\left(\frac{31}{110}\right)e(107220)e\left(\frac{107}{220}\right)e(203220)e\left(\frac{203}{220}\right)e(161220)e\left(\frac{161}{220}\right)e(755)e\left(\frac{7}{55}\right)e(3155)e\left(\frac{31}{55}\right)e(89220)e\left(\frac{89}{220}\right)e(49110)e\left(\frac{49}{110}\right)e(2744)e\left(\frac{27}{44}\right)
sage: chi.jacobi_sum(n)
 
χ1815(47,a)   \chi_{ 1815 }(47,a) \; at   a=\;a = e.g. 2