from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([110,55,196]))
pari: [g,chi] = znchar(Mod(47,1815))
χ1815(38,⋅)
χ1815(47,⋅)
χ1815(53,⋅)
χ1815(92,⋅)
χ1815(113,⋅)
χ1815(137,⋅)
χ1815(152,⋅)
χ1815(158,⋅)
χ1815(203,⋅)
χ1815(212,⋅)
χ1815(218,⋅)
χ1815(257,⋅)
χ1815(278,⋅)
χ1815(302,⋅)
χ1815(317,⋅)
χ1815(368,⋅)
χ1815(377,⋅)
χ1815(383,⋅)
χ1815(422,⋅)
χ1815(443,⋅)
χ1815(467,⋅)
χ1815(482,⋅)
χ1815(488,⋅)
χ1815(533,⋅)
χ1815(542,⋅)
χ1815(548,⋅)
χ1815(587,⋅)
χ1815(647,⋅)
χ1815(653,⋅)
χ1815(698,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1211,727,1696) → (−1,i,e(5549))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 19 | 23 |
χ1815(47,a) |
1 | 1 | e(220141) | e(11031) | e(220107) | e(220203) | e(220161) | e(557) | e(5531) | e(22089) | e(11049) | e(4427) |