sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([110,55,112]))
pari:[g,chi] = znchar(Mod(482,1815))
Modulus: | 1815 | |
Conductor: | 1815 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 220 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1815(38,⋅)
χ1815(47,⋅)
χ1815(53,⋅)
χ1815(92,⋅)
χ1815(113,⋅)
χ1815(137,⋅)
χ1815(152,⋅)
χ1815(158,⋅)
χ1815(203,⋅)
χ1815(212,⋅)
χ1815(218,⋅)
χ1815(257,⋅)
χ1815(278,⋅)
χ1815(302,⋅)
χ1815(317,⋅)
χ1815(368,⋅)
χ1815(377,⋅)
χ1815(383,⋅)
χ1815(422,⋅)
χ1815(443,⋅)
χ1815(467,⋅)
χ1815(482,⋅)
χ1815(488,⋅)
χ1815(533,⋅)
χ1815(542,⋅)
χ1815(548,⋅)
χ1815(587,⋅)
χ1815(647,⋅)
χ1815(653,⋅)
χ1815(698,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1211,727,1696) → (−1,i,e(5528))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 19 | 23 |
χ1815(482,a) |
1 | 1 | e(22057) | e(11057) | e(220179) | e(220171) | e(22037) | e(554) | e(552) | e(220153) | e(11083) | e(4439) |
sage:chi.jacobi_sum(n)