Properties

Label 1925.43
Modulus 19251925
Conductor 5555
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,0,2]))
 
pari: [g,chi] = znchar(Mod(43,1925))
 

Basic properties

Modulus: 19251925
Conductor: 5555
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ55(43,)\chi_{55}(43,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1925.k

χ1925(43,)\chi_{1925}(43,\cdot) χ1925(582,)\chi_{1925}(582,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.15125.1

Values on generators

(1002,276,1751)(1002,276,1751)(i,1,1)(-i,1,-1)

First values

aa 1-1112233446688991212131316161717
χ1925(43,a) \chi_{ 1925 }(43, a) 1111iiii1-11-1i-i1-1i-ii-i11ii
sage: chi.jacobi_sum(n)
 
χ1925(43,a)   \chi_{ 1925 }(43,a) \; at   a=\;a = e.g. 2