Properties

Label 1925.k
Modulus 19251925
Conductor 5555
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1925, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,0,2]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(43,1925))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 19251925
Conductor: 5555
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 55.e
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.15125.1

Characters in Galois orbit

Character 1-1 11 22 33 44 66 88 99 1212 1313 1616 1717
χ1925(43,)\chi_{1925}(43,\cdot) 11 11 ii ii 1-1 1-1 i-i 1-1 i-i i-i 11 ii
χ1925(582,)\chi_{1925}(582,\cdot) 11 11 i-i i-i 1-1 1-1 ii 1-1 ii ii 11 i-i