Properties

Label 1950.1381
Modulus $1950$
Conductor $325$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,12,10]))
 
pari: [g,chi] = znchar(Mod(1381,1950))
 

Basic properties

Modulus: \(1950\)
Conductor: \(325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(81,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1950.bw

\(\chi_{1950}(61,\cdot)\) \(\chi_{1950}(211,\cdot)\) \(\chi_{1950}(841,\cdot)\) \(\chi_{1950}(991,\cdot)\) \(\chi_{1950}(1231,\cdot)\) \(\chi_{1950}(1381,\cdot)\) \(\chi_{1950}(1621,\cdot)\) \(\chi_{1950}(1771,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((1301,1327,301)\) → \((1,e\left(\frac{2}{5}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1950 }(1381, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1950 }(1381,a) \;\) at \(\;a = \) e.g. 2