Properties

Label 2025.383
Modulus $2025$
Conductor $2025$
Order $540$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(540))
 
M = H._module
 
chi = DirichletCharacter(H, M([410,81]))
 
pari: [g,chi] = znchar(Mod(383,2025))
 

Basic properties

Modulus: \(2025\)
Conductor: \(2025\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(540\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2025.bv

\(\chi_{2025}(2,\cdot)\) \(\chi_{2025}(23,\cdot)\) \(\chi_{2025}(38,\cdot)\) \(\chi_{2025}(47,\cdot)\) \(\chi_{2025}(77,\cdot)\) \(\chi_{2025}(83,\cdot)\) \(\chi_{2025}(92,\cdot)\) \(\chi_{2025}(113,\cdot)\) \(\chi_{2025}(122,\cdot)\) \(\chi_{2025}(128,\cdot)\) \(\chi_{2025}(137,\cdot)\) \(\chi_{2025}(158,\cdot)\) \(\chi_{2025}(167,\cdot)\) \(\chi_{2025}(173,\cdot)\) \(\chi_{2025}(203,\cdot)\) \(\chi_{2025}(212,\cdot)\) \(\chi_{2025}(227,\cdot)\) \(\chi_{2025}(248,\cdot)\) \(\chi_{2025}(263,\cdot)\) \(\chi_{2025}(272,\cdot)\) \(\chi_{2025}(302,\cdot)\) \(\chi_{2025}(308,\cdot)\) \(\chi_{2025}(317,\cdot)\) \(\chi_{2025}(338,\cdot)\) \(\chi_{2025}(347,\cdot)\) \(\chi_{2025}(353,\cdot)\) \(\chi_{2025}(362,\cdot)\) \(\chi_{2025}(383,\cdot)\) \(\chi_{2025}(392,\cdot)\) \(\chi_{2025}(398,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{540})$
Fixed field: Number field defined by a degree 540 polynomial (not computed)

Values on generators

\((326,1702)\) → \((e\left(\frac{41}{54}\right),e\left(\frac{3}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 2025 }(383, a) \) \(1\)\(1\)\(e\left(\frac{491}{540}\right)\)\(e\left(\frac{221}{270}\right)\)\(e\left(\frac{97}{108}\right)\)\(e\left(\frac{131}{180}\right)\)\(e\left(\frac{73}{270}\right)\)\(e\left(\frac{499}{540}\right)\)\(e\left(\frac{109}{135}\right)\)\(e\left(\frac{86}{135}\right)\)\(e\left(\frac{1}{180}\right)\)\(e\left(\frac{13}{90}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2025 }(383,a) \;\) at \(\;a = \) e.g. 2