Properties

Label 2025.83
Modulus 20252025
Conductor 20252025
Order 540540
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(540))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,81]))
 
pari: [g,chi] = znchar(Mod(83,2025))
 

Basic properties

Modulus: 20252025
Conductor: 20252025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 540540
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2025.bv

χ2025(2,)\chi_{2025}(2,\cdot) χ2025(23,)\chi_{2025}(23,\cdot) χ2025(38,)\chi_{2025}(38,\cdot) χ2025(47,)\chi_{2025}(47,\cdot) χ2025(77,)\chi_{2025}(77,\cdot) χ2025(83,)\chi_{2025}(83,\cdot) χ2025(92,)\chi_{2025}(92,\cdot) χ2025(113,)\chi_{2025}(113,\cdot) χ2025(122,)\chi_{2025}(122,\cdot) χ2025(128,)\chi_{2025}(128,\cdot) χ2025(137,)\chi_{2025}(137,\cdot) χ2025(158,)\chi_{2025}(158,\cdot) χ2025(167,)\chi_{2025}(167,\cdot) χ2025(173,)\chi_{2025}(173,\cdot) χ2025(203,)\chi_{2025}(203,\cdot) χ2025(212,)\chi_{2025}(212,\cdot) χ2025(227,)\chi_{2025}(227,\cdot) χ2025(248,)\chi_{2025}(248,\cdot) χ2025(263,)\chi_{2025}(263,\cdot) χ2025(272,)\chi_{2025}(272,\cdot) χ2025(302,)\chi_{2025}(302,\cdot) χ2025(308,)\chi_{2025}(308,\cdot) χ2025(317,)\chi_{2025}(317,\cdot) χ2025(338,)\chi_{2025}(338,\cdot) χ2025(347,)\chi_{2025}(347,\cdot) χ2025(353,)\chi_{2025}(353,\cdot) χ2025(362,)\chi_{2025}(362,\cdot) χ2025(383,)\chi_{2025}(383,\cdot) χ2025(392,)\chi_{2025}(392,\cdot) χ2025(398,)\chi_{2025}(398,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ540)\Q(\zeta_{540})
Fixed field: Number field defined by a degree 540 polynomial (not computed)

Values on generators

(326,1702)(326,1702)(e(154),e(320))(e\left(\frac{1}{54}\right),e\left(\frac{3}{20}\right))

First values

aa 1-11122447788111113131414161617171919
χ2025(83,a) \chi_{ 2025 }(83, a) 1111e(91540)e\left(\frac{91}{540}\right)e(91270)e\left(\frac{91}{270}\right)e(5108)e\left(\frac{5}{108}\right)e(91180)e\left(\frac{91}{180}\right)e(173270)e\left(\frac{173}{270}\right)e(539540)e\left(\frac{539}{540}\right)e(29135)e\left(\frac{29}{135}\right)e(91135)e\left(\frac{91}{135}\right)e(101180)e\left(\frac{101}{180}\right)e(5390)e\left(\frac{53}{90}\right)
sage: chi.jacobi_sum(n)
 
χ2025(83,a)   \chi_{ 2025 }(83,a) \; at   a=\;a = e.g. 2