from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2025, base_ring=CyclotomicField(540))
M = H._module
chi = DirichletCharacter(H, M([10,81]))
pari: [g,chi] = znchar(Mod(83,2025))
χ2025(2,⋅)
χ2025(23,⋅)
χ2025(38,⋅)
χ2025(47,⋅)
χ2025(77,⋅)
χ2025(83,⋅)
χ2025(92,⋅)
χ2025(113,⋅)
χ2025(122,⋅)
χ2025(128,⋅)
χ2025(137,⋅)
χ2025(158,⋅)
χ2025(167,⋅)
χ2025(173,⋅)
χ2025(203,⋅)
χ2025(212,⋅)
χ2025(227,⋅)
χ2025(248,⋅)
χ2025(263,⋅)
χ2025(272,⋅)
χ2025(302,⋅)
χ2025(308,⋅)
χ2025(317,⋅)
χ2025(338,⋅)
χ2025(347,⋅)
χ2025(353,⋅)
χ2025(362,⋅)
χ2025(383,⋅)
χ2025(392,⋅)
χ2025(398,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,1702) → (e(541),e(203))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ2025(83,a) |
1 | 1 | e(54091) | e(27091) | e(1085) | e(18091) | e(270173) | e(540539) | e(13529) | e(13591) | e(180101) | e(9053) |