Properties

Label 209.158
Modulus $209$
Conductor $209$
Order $45$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,70]))
 
pari: [g,chi] = znchar(Mod(158,209))
 

Basic properties

Modulus: \(209\)
Conductor: \(209\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(45\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 209.u

\(\chi_{209}(4,\cdot)\) \(\chi_{209}(5,\cdot)\) \(\chi_{209}(9,\cdot)\) \(\chi_{209}(16,\cdot)\) \(\chi_{209}(25,\cdot)\) \(\chi_{209}(36,\cdot)\) \(\chi_{209}(42,\cdot)\) \(\chi_{209}(47,\cdot)\) \(\chi_{209}(80,\cdot)\) \(\chi_{209}(81,\cdot)\) \(\chi_{209}(82,\cdot)\) \(\chi_{209}(92,\cdot)\) \(\chi_{209}(93,\cdot)\) \(\chi_{209}(104,\cdot)\) \(\chi_{209}(119,\cdot)\) \(\chi_{209}(130,\cdot)\) \(\chi_{209}(137,\cdot)\) \(\chi_{209}(157,\cdot)\) \(\chi_{209}(158,\cdot)\) \(\chi_{209}(168,\cdot)\) \(\chi_{209}(169,\cdot)\) \(\chi_{209}(180,\cdot)\) \(\chi_{209}(196,\cdot)\) \(\chi_{209}(207,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: 45.45.43679806300610465846484971330073185012597520004657724600953543350870941304329239684756561.1

Values on generators

\((134,78)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 209 }(158, a) \) \(1\)\(1\)\(e\left(\frac{44}{45}\right)\)\(e\left(\frac{32}{45}\right)\)\(e\left(\frac{43}{45}\right)\)\(e\left(\frac{11}{45}\right)\)\(e\left(\frac{31}{45}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{19}{45}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 209 }(158,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 209 }(158,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 209 }(158,·),\chi_{ 209 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 209 }(158,·)) \;\) at \(\; a,b = \) e.g. 1,2