Properties

Label 209.93
Modulus 209209
Conductor 209209
Order 4545
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([36,50]))
 
pari: [g,chi] = znchar(Mod(93,209))
 

Basic properties

Modulus: 209209
Conductor: 209209
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4545
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 209.u

χ209(4,)\chi_{209}(4,\cdot) χ209(5,)\chi_{209}(5,\cdot) χ209(9,)\chi_{209}(9,\cdot) χ209(16,)\chi_{209}(16,\cdot) χ209(25,)\chi_{209}(25,\cdot) χ209(36,)\chi_{209}(36,\cdot) χ209(42,)\chi_{209}(42,\cdot) χ209(47,)\chi_{209}(47,\cdot) χ209(80,)\chi_{209}(80,\cdot) χ209(81,)\chi_{209}(81,\cdot) χ209(82,)\chi_{209}(82,\cdot) χ209(92,)\chi_{209}(92,\cdot) χ209(93,)\chi_{209}(93,\cdot) χ209(104,)\chi_{209}(104,\cdot) χ209(119,)\chi_{209}(119,\cdot) χ209(130,)\chi_{209}(130,\cdot) χ209(137,)\chi_{209}(137,\cdot) χ209(157,)\chi_{209}(157,\cdot) χ209(158,)\chi_{209}(158,\cdot) χ209(168,)\chi_{209}(168,\cdot) χ209(169,)\chi_{209}(169,\cdot) χ209(180,)\chi_{209}(180,\cdot) χ209(196,)\chi_{209}(196,\cdot) χ209(207,)\chi_{209}(207,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: 45.45.43679806300610465846484971330073185012597520004657724600953543350870941304329239684756561.1

Values on generators

(134,78)(134,78)(e(25),e(59))(e\left(\frac{2}{5}\right),e\left(\frac{5}{9}\right))

First values

aa 1-111223344556677889910101212
χ209(93,a) \chi_{ 209 }(93, a) 1111e(4345)e\left(\frac{43}{45}\right)e(1945)e\left(\frac{19}{45}\right)e(4145)e\left(\frac{41}{45}\right)e(2245)e\left(\frac{22}{45}\right)e(1745)e\left(\frac{17}{45}\right)e(215)e\left(\frac{2}{15}\right)e(1315)e\left(\frac{13}{15}\right)e(3845)e\left(\frac{38}{45}\right)e(49)e\left(\frac{4}{9}\right)e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ209(93,a)   \chi_{ 209 }(93,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ209(93,))   \tau_{ a }( \chi_{ 209 }(93,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ209(93,),χ209(n,))   J(\chi_{ 209 }(93,·),\chi_{ 209 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ209(93,))  K(a,b,\chi_{ 209 }(93,·)) \; at   a,b=\; a,b = e.g. 1,2