Properties

Label 209.u
Modulus $209$
Conductor $209$
Order $45$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(4,209))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(209\)
Conductor: \(209\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(45\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: 45.45.43679806300610465846484971330073185012597520004657724600953543350870941304329239684756561.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{209}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(5,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(36,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(42,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(80,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(81,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(82,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(92,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(93,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(104,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(119,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(130,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(158,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(168,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(169,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{209}(180,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(196,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{209}(207,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\)