Properties

Label 2156.1807
Modulus $2156$
Conductor $2156$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([35,10,56]))
 
pari: [g,chi] = znchar(Mod(1807,2156))
 

Basic properties

Modulus: \(2156\)
Conductor: \(2156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2156.ca

\(\chi_{2156}(15,\cdot)\) \(\chi_{2156}(71,\cdot)\) \(\chi_{2156}(267,\cdot)\) \(\chi_{2156}(323,\cdot)\) \(\chi_{2156}(379,\cdot)\) \(\chi_{2156}(575,\cdot)\) \(\chi_{2156}(603,\cdot)\) \(\chi_{2156}(631,\cdot)\) \(\chi_{2156}(911,\cdot)\) \(\chi_{2156}(939,\cdot)\) \(\chi_{2156}(995,\cdot)\) \(\chi_{2156}(1191,\cdot)\) \(\chi_{2156}(1219,\cdot)\) \(\chi_{2156}(1247,\cdot)\) \(\chi_{2156}(1303,\cdot)\) \(\chi_{2156}(1499,\cdot)\) \(\chi_{2156}(1527,\cdot)\) \(\chi_{2156}(1555,\cdot)\) \(\chi_{2156}(1611,\cdot)\) \(\chi_{2156}(1807,\cdot)\) \(\chi_{2156}(1835,\cdot)\) \(\chi_{2156}(1919,\cdot)\) \(\chi_{2156}(2115,\cdot)\) \(\chi_{2156}(2143,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((1079,1277,981)\) → \((-1,e\left(\frac{1}{7}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2156 }(1807, a) \) \(-1\)\(1\)\(e\left(\frac{3}{70}\right)\)\(e\left(\frac{12}{35}\right)\)\(e\left(\frac{3}{35}\right)\)\(e\left(\frac{18}{35}\right)\)\(e\left(\frac{27}{70}\right)\)\(e\left(\frac{27}{35}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{24}{35}\right)\)\(e\left(\frac{9}{70}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2156 }(1807,a) \;\) at \(\;a = \) e.g. 2