Properties

Label 2156.ca
Modulus $2156$
Conductor $2156$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([35,50,14]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(15,2156))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2156\)
Conductor: \(2156\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\) \(27\)
\(\chi_{2156}(15,\cdot)\) \(-1\) \(1\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{31}{70}\right)\)
\(\chi_{2156}(71,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{57}{70}\right)\)
\(\chi_{2156}(267,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{29}{70}\right)\)
\(\chi_{2156}(323,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{41}{70}\right)\)
\(\chi_{2156}(379,\cdot)\) \(-1\) \(1\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{67}{70}\right)\)
\(\chi_{2156}(575,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{39}{70}\right)\)
\(\chi_{2156}(603,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{3}{70}\right)\)
\(\chi_{2156}(631,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{51}{70}\right)\)
\(\chi_{2156}(911,\cdot)\) \(-1\) \(1\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{13}{70}\right)\)
\(\chi_{2156}(939,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{61}{70}\right)\)
\(\chi_{2156}(995,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{17}{70}\right)\)
\(\chi_{2156}(1191,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{59}{70}\right)\)
\(\chi_{2156}(1219,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{23}{70}\right)\)
\(\chi_{2156}(1247,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{1}{70}\right)\)
\(\chi_{2156}(1303,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{27}{70}\right)\)
\(\chi_{2156}(1499,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{69}{70}\right)\)
\(\chi_{2156}(1527,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{33}{70}\right)\)
\(\chi_{2156}(1555,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{11}{70}\right)\)
\(\chi_{2156}(1611,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{37}{70}\right)\)
\(\chi_{2156}(1807,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{9}{70}\right)\)
\(\chi_{2156}(1835,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{43}{70}\right)\)
\(\chi_{2156}(1919,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{47}{70}\right)\)
\(\chi_{2156}(2115,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{19}{70}\right)\)
\(\chi_{2156}(2143,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{53}{70}\right)\)