from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(400))
M = H._module
chi = DirichletCharacter(H, M([0,175,0,216]))
pari: [g,chi] = znchar(Mod(109,216000))
χ216000(109,⋅)
χ216000(1189,⋅)
χ216000(2269,⋅)
χ216000(4429,⋅)
χ216000(5509,⋅)
χ216000(6589,⋅)
χ216000(7669,⋅)
χ216000(9829,⋅)
χ216000(10909,⋅)
χ216000(11989,⋅)
χ216000(13069,⋅)
χ216000(15229,⋅)
χ216000(16309,⋅)
χ216000(17389,⋅)
χ216000(18469,⋅)
χ216000(20629,⋅)
χ216000(21709,⋅)
χ216000(22789,⋅)
χ216000(23869,⋅)
χ216000(26029,⋅)
χ216000(27109,⋅)
χ216000(28189,⋅)
χ216000(29269,⋅)
χ216000(31429,⋅)
χ216000(32509,⋅)
χ216000(33589,⋅)
χ216000(34669,⋅)
χ216000(36829,⋅)
χ216000(37909,⋅)
χ216000(38989,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (1,e(167),1,e(5027))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(109,a) |
1 | 1 | e(4011) | e(40091) | e(400249) | e(10067) | e(400313) | e(200173) | e(400117) | e(5021) | e(400239) | e(200177) |