from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(400))
M = H._module
chi = DirichletCharacter(H, M([0,375,0,376]))
pari: [g,chi] = znchar(Mod(21709,216000))
χ216000(109,⋅)
χ216000(1189,⋅)
χ216000(2269,⋅)
χ216000(4429,⋅)
χ216000(5509,⋅)
χ216000(6589,⋅)
χ216000(7669,⋅)
χ216000(9829,⋅)
χ216000(10909,⋅)
χ216000(11989,⋅)
χ216000(13069,⋅)
χ216000(15229,⋅)
χ216000(16309,⋅)
χ216000(17389,⋅)
χ216000(18469,⋅)
χ216000(20629,⋅)
χ216000(21709,⋅)
χ216000(22789,⋅)
χ216000(23869,⋅)
χ216000(26029,⋅)
χ216000(27109,⋅)
χ216000(28189,⋅)
χ216000(29269,⋅)
χ216000(31429,⋅)
χ216000(32509,⋅)
χ216000(33589,⋅)
χ216000(34669,⋅)
χ216000(36829,⋅)
χ216000(37909,⋅)
χ216000(38989,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (1,e(1615),1,e(5047))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(21709,a) |
1 | 1 | e(4011) | e(40051) | e(400289) | e(10087) | e(400193) | e(20053) | e(400237) | e(5031) | e(400279) | e(20097) |