Properties

Label 216000.21709
Modulus 216000216000
Conductor 80008000
Order 400400
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(400))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,375,0,376]))
 
pari: [g,chi] = znchar(Mod(21709,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 80008000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 400400
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ8000(5709,)\chi_{8000}(5709,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.tz

χ216000(109,)\chi_{216000}(109,\cdot) χ216000(1189,)\chi_{216000}(1189,\cdot) χ216000(2269,)\chi_{216000}(2269,\cdot) χ216000(4429,)\chi_{216000}(4429,\cdot) χ216000(5509,)\chi_{216000}(5509,\cdot) χ216000(6589,)\chi_{216000}(6589,\cdot) χ216000(7669,)\chi_{216000}(7669,\cdot) χ216000(9829,)\chi_{216000}(9829,\cdot) χ216000(10909,)\chi_{216000}(10909,\cdot) χ216000(11989,)\chi_{216000}(11989,\cdot) χ216000(13069,)\chi_{216000}(13069,\cdot) χ216000(15229,)\chi_{216000}(15229,\cdot) χ216000(16309,)\chi_{216000}(16309,\cdot) χ216000(17389,)\chi_{216000}(17389,\cdot) χ216000(18469,)\chi_{216000}(18469,\cdot) χ216000(20629,)\chi_{216000}(20629,\cdot) χ216000(21709,)\chi_{216000}(21709,\cdot) χ216000(22789,)\chi_{216000}(22789,\cdot) χ216000(23869,)\chi_{216000}(23869,\cdot) χ216000(26029,)\chi_{216000}(26029,\cdot) χ216000(27109,)\chi_{216000}(27109,\cdot) χ216000(28189,)\chi_{216000}(28189,\cdot) χ216000(29269,)\chi_{216000}(29269,\cdot) χ216000(31429,)\chi_{216000}(31429,\cdot) χ216000(32509,)\chi_{216000}(32509,\cdot) χ216000(33589,)\chi_{216000}(33589,\cdot) χ216000(34669,)\chi_{216000}(34669,\cdot) χ216000(36829,)\chi_{216000}(36829,\cdot) χ216000(37909,)\chi_{216000}(37909,\cdot) χ216000(38989,)\chi_{216000}(38989,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ400)\Q(\zeta_{400})
Fixed field: Number field defined by a degree 400 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(1516),1,e(4750))(1,e\left(\frac{15}{16}\right),1,e\left(\frac{47}{50}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(21709,a) \chi_{ 216000 }(21709, a) 1111e(1140)e\left(\frac{11}{40}\right)e(51400)e\left(\frac{51}{400}\right)e(289400)e\left(\frac{289}{400}\right)e(87100)e\left(\frac{87}{100}\right)e(193400)e\left(\frac{193}{400}\right)e(53200)e\left(\frac{53}{200}\right)e(237400)e\left(\frac{237}{400}\right)e(3150)e\left(\frac{31}{50}\right)e(279400)e\left(\frac{279}{400}\right)e(97200)e\left(\frac{97}{200}\right)
sage: chi.jacobi_sum(n)
 
χ216000(21709,a)   \chi_{ 216000 }(21709,a) \; at   a=\;a = e.g. 2