Properties

Label 216000.1529
Modulus 216000216000
Conductor 3600036000
Order 600600
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(600))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,375,500,372]))
 
pari: [g,chi] = znchar(Mod(1529,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 3600036000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 600600
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ36000(3029,)\chi_{36000}(3029,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.vj

χ216000(89,)\chi_{216000}(89,\cdot) χ216000(1529,)\chi_{216000}(1529,\cdot) χ216000(3689,)\chi_{216000}(3689,\cdot) χ216000(4409,)\chi_{216000}(4409,\cdot) χ216000(6569,)\chi_{216000}(6569,\cdot) χ216000(8009,)\chi_{216000}(8009,\cdot) χ216000(8729,)\chi_{216000}(8729,\cdot) χ216000(10169,)\chi_{216000}(10169,\cdot) χ216000(10889,)\chi_{216000}(10889,\cdot) χ216000(12329,)\chi_{216000}(12329,\cdot) χ216000(14489,)\chi_{216000}(14489,\cdot) χ216000(15209,)\chi_{216000}(15209,\cdot) χ216000(17369,)\chi_{216000}(17369,\cdot) χ216000(18809,)\chi_{216000}(18809,\cdot) χ216000(19529,)\chi_{216000}(19529,\cdot) χ216000(20969,)\chi_{216000}(20969,\cdot) χ216000(21689,)\chi_{216000}(21689,\cdot) χ216000(23129,)\chi_{216000}(23129,\cdot) χ216000(25289,)\chi_{216000}(25289,\cdot) χ216000(26009,)\chi_{216000}(26009,\cdot) χ216000(28169,)\chi_{216000}(28169,\cdot) χ216000(29609,)\chi_{216000}(29609,\cdot) χ216000(30329,)\chi_{216000}(30329,\cdot) χ216000(31769,)\chi_{216000}(31769,\cdot) χ216000(32489,)\chi_{216000}(32489,\cdot) χ216000(33929,)\chi_{216000}(33929,\cdot) χ216000(36089,)\chi_{216000}(36089,\cdot) χ216000(36809,)\chi_{216000}(36809,\cdot) χ216000(38969,)\chi_{216000}(38969,\cdot) χ216000(40409,)\chi_{216000}(40409,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ600)\Q(\zeta_{600})
Fixed field: Number field defined by a degree 600 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(58),e(56),e(3150))(1,e\left(\frac{5}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{31}{50}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(1529,a) \chi_{ 216000 }(1529, a) 1-111e(1760)e\left(\frac{17}{60}\right)e(47600)e\left(\frac{47}{600}\right)e(133600)e\left(\frac{133}{600}\right)e(1350)e\left(\frac{13}{50}\right)e(107200)e\left(\frac{107}{200}\right)e(41300)e\left(\frac{41}{300}\right)e(89600)e\left(\frac{89}{600}\right)e(3275)e\left(\frac{32}{75}\right)e(121200)e\left(\frac{121}{200}\right)e(59300)e\left(\frac{59}{300}\right)
sage: chi.jacobi_sum(n)
 
χ216000(1529,a)   \chi_{ 216000 }(1529,a) \; at   a=\;a = e.g. 2